Papers
Topics
Authors
Recent
Search
2000 character limit reached

DP-MLM: Differentially Private Text Rewriting Using Masked Language Models

Published 30 Jun 2024 in cs.CL | (2407.00637v1)

Abstract: The task of text privatization using Differential Privacy has recently taken the form of $\textit{text rewriting}$, in which an input text is obfuscated via the use of generative (large) LLMs. While these methods have shown promising results in the ability to preserve privacy, these methods rely on autoregressive models which lack a mechanism to contextualize the private rewriting process. In response to this, we propose $\textbf{DP-MLM}$, a new method for differentially private text rewriting based on leveraging masked LLMs (MLMs) to rewrite text in a semantically similar $\textit{and}$ obfuscated manner. We accomplish this with a simple contextualization technique, whereby we rewrite a text one token at a time. We find that utilizing encoder-only MLMs provides better utility preservation at lower $\varepsilon$ levels, as compared to previous methods relying on larger models with a decoder. In addition, MLMs allow for greater customization of the rewriting mechanism, as opposed to generative approaches. We make the code for $\textbf{DP-MLM}$ public and reusable, found at https://github.com/sjmeis/DPMLM .

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.