Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Parameterized Algorithm for Vertex and Edge Connectivity of Embedded Graphs (2407.00586v1)

Published 30 Jun 2024 in cs.DS and math.CO

Abstract: The problem of computing vertex and edge connectivity of a graph are classical problems in algorithmic graph theory. The focus of this paper is on computing these parameters on embedded graphs. A typical example of an embedded graph is a planar graph which can be drawn with no edge crossings. It has long been known that vertex and edge connectivity of planar embedded graphs can be computed in linear time. Very recently, Biedl and Murali extended the techniques from planar graphs to 1-plane graphs without $\times$-crossings, i.e., crossings whose endpoints induce a matching. While the tools used were novel, they were highly tailored to 1-plane graphs, and do not provide much leeway for further extension. In this paper, we develop alternate techniques that are simpler, have wider applications to near-planar graphs, and can be used to test both vertex and edge connectivity. Our technique works for all those embedded graphs where any pair of crossing edges are connected by a path that, roughly speaking, can be covered with few cells of the drawing. Important examples of such graphs include optimal 2-planar and optimal 3-planar graphs, $d$-map graphs, $d$-framed graphs, graphs with bounded crossing number, and $k$-plane graphs with bounded number of $\times$-crossings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.