Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features (2407.00584v4)

Published 30 Jun 2024 in cs.LG, stat.CO, and stat.ML

Abstract: Randomized algorithms exploit stochasticity to reduce computational complexity. One important example is random feature regression (RFR) that accelerates Gaussian process regression (GPR). RFR approximates an unknown function with a random neural network whose hidden weights and biases are sampled from a probability distribution. Only the final output layer is fit to data. In randomized algorithms like RFR, the hyperparameters that characterize the sampling distribution greatly impact performance, yet are not directly accessible from samples. This makes optimization of hyperparameters via standard (gradient-based) optimization tools inapplicable. Inspired by Bayesian ideas from GPR, this paper introduces a random objective function that is tailored for hyperparameter tuning of vector-valued random features. The objective is minimized with ensemble Kalman inversion (EKI). EKI is a gradient-free particle-based optimizer that is scalable to high-dimensions and robust to randomness in objective functions. A numerical study showcases the new black-box methodology to learn hyperparameter distributions in several problems that are sensitive to the hyperparameter selection: two global sensitivity analyses, integrating a chaotic dynamical system, and solving a Bayesian inverse problem from atmospheric dynamics. The success of the proposed EKI-based algorithm for RFR suggests its potential for automated optimization of hyperparameters arising in other randomized algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.