Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ShapG: new feature importance method based on the Shapley value (2407.00506v1)

Published 29 Jun 2024 in cs.AI, cs.GT, and cs.LG

Abstract: With wide application of AI, it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chi Zhao (4 papers)
  2. Jing Liu (525 papers)
  3. Elena Parilina (3 papers)