Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Methodology to Deploy CNN-Based Computer Vision Models on Immersive Wearable Devices (2407.00233v1)

Published 28 Jun 2024 in cs.CV, cs.HC, and cs.LG

Abstract: Convolutional Neural Network (CNN) models often lack the ability to incorporate human input, which can be addressed by Augmented Reality (AR) headsets. However, current AR headsets face limitations in processing power, which has prevented researchers from performing real-time, complex image recognition tasks using CNNs in AR headsets. This paper presents a method to deploy CNN models on AR headsets by training them on computers and transferring the optimized weight matrices to the headset. The approach transforms the image data and CNN layers into a one-dimensional format suitable for the AR platform. We demonstrate this method by training the LeNet-5 CNN model on the MNIST dataset using PyTorch and deploying it on a HoloLens AR headset. The results show that the model maintains an accuracy of approximately 98%, similar to its performance on a computer. This integration of CNN and AR enables real-time image processing on AR headsets, allowing for the incorporation of human input into AI models.

Summary

We haven't generated a summary for this paper yet.