Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps (2407.00011v1)

Published 28 Apr 2024 in cs.DC, cs.LG, cs.NE, and nlin.CD

Abstract: Complex systems often show macroscopic coherent behavior due to the interactions of microscopic agents like molecules, cells, or individuals in a population with their environment. However, simulating such systems poses several computational challenges during simulation as the underlying dynamics vary and span wide spatiotemporal scales of interest. To capture the fast-evolving features, finer time steps are required while ensuring that the simulation time is long enough to capture the slow-scale behavior, making the analyses computationally unmanageable. This paper showcases how deep learning techniques can be used to develop a precise time-stepping approach for multiscale systems using the joint discovery of coordinates and flow maps. While the former allows us to represent the multiscale dynamics on a representative basis, the latter enables the iterative time-stepping estimation of the reduced variables. The resulting framework achieves state-of-the-art predictive accuracy while incurring lesser computational costs. We demonstrate this ability of the proposed scheme on the large-scale Fitzhugh Nagumo neuron model and the 1D Kuramoto-Sivashinsky equation in the chaotic regime.

Summary

We haven't generated a summary for this paper yet.