Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polarization and Gorenstein liaison (2406.19985v1)

Published 28 Jun 2024 in math.AC, math.AG, and math.CO

Abstract: A major open question in the theory of Gorenstein liaison is whether or not every arithmetically Cohen-Macaulay subscheme of $\mathbb{P}n$ can be G-linked to a complete intersection. Migliore and Nagel showed that, if such a scheme is generically Gorenstein (e.g., reduced), then, after re-embedding so that it is viewed as a subscheme of $\mathbb{P}{n+1}$, indeed it can be G-linked to a complete intersection. Motivated by this result, we consider techniques for constructing G-links on a scheme from G-links on a closely related reduced scheme. Polarization is a tool for producing a squarefree monomial ideal from an arbitrary monomial ideal. Basic double G-links on squarefree monomial ideals can be induced from vertex decompositions of their Stanley-Reisner complexes. Given a monomial ideal $I$ and a vertex decomposition of the Stanley-Reisner complex of its polarization $\mathcal{P}(I)$, we give conditions that allow for the lifting of an associated basic double G-link of $\mathcal{P}(I)$ to a basic double G-link of $I$ itself. We use the relationship we develop in the process to show that the Stanley-Reisner complexes of polarizations of artinian monomial ideals and of stable Cohen-Macaulay monomial ideals are vertex decomposable, recovering and strengthening the recent result of Fl{\o}ystad and Mafi that these complexes are shellable. We then introduce and study polarization of a Gr\"obner basis of an arbitrary homogeneous ideal and give a relationship between geometric vertex decomposition of a polarization and elementary G-biliaison that is analogous to our result on vertex decomposition and basic double G-linkage.

Summary

We haven't generated a summary for this paper yet.