Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal subsampling for functional composite quantile regression in massive data (2406.19691v1)

Published 28 Jun 2024 in stat.ME

Abstract: As computer resources become increasingly limited, traditional statistical methods face challenges in analyzing massive data, especially in functional data analysis. To address this issue, subsampling offers a viable solution by significantly reducing computational requirements. This paper introduces a subsampling technique for composite quantile regression, designed for efficient application within the functional linear model on large datasets. We establish the asymptotic distribution of the subsampling estimator and introduce an optimal subsampling method based on the functional L-optimality criterion. Results from simulation studies and the real data analysis consistently demonstrate the superiority of the L-optimality criterion-based optimal subsampling method over the uniform subsampling approach.

Summary

We haven't generated a summary for this paper yet.