Closed-loop equilibria for Stackelberg games: it's all about stochastic targets (2406.19607v1)
Abstract: In this paper, we provide a general approach to reformulating any continuous-time stochastic Stackelberg differential game under closed-loop strategies as a single-level optimisation problem with target constraints. More precisely, we consider a Stackelberg game in which the leader and the follower can both control the drift and the volatility of a stochastic output process, in order to maximise their respective expected utility. The aim is to characterise the Stackelberg equilibrium when the players adopt `closed-loop strategies', i.e. their decisions are based solely on the historical information of the output process, excluding especially any direct dependence on the underlying driving noise, often unobservable in real-world applications. We first show that, by considering the--second-order--backward stochastic differential equation associated with the continuation utility of the follower as a controlled state variable for the leader, the latter's unconventional optimisation problem can be reformulated as a more standard stochastic control problem with stochastic target constraints. Thereafter, adapting the methodology developed by Soner and Touzi [67] or Bouchard, \'Elie, and Imbert [14], the optimal strategies, as well as the corresponding value of the Stackelberg equilibrium, can be characterised through the solution of a well-specified system of Hamilton--Jacobi--BeLLMan equations. For a more comprehensive insight, we illustrate our approach through a simple example, facilitating both theoretical and numerical detailed comparisons with the solutions under different information structures studied in the literature.