Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^\infty$-sizes of the spaces Siegel cusp forms of degree $n$ via Poincaré series (2406.19335v1)

Published 27 Jun 2024 in math.NT

Abstract: We prove the conjectures on the ($L{\infty}$)-sizes of the spaces of Siegel cusp forms of degree $n$, weight $k$, for any congruence subgroup in the weight aspect as well as for all principal congruence subgroups in the level aspect, in particular. This size is measured by the size of the Bergman kernel of the space. More precisely we show that the aforementioned size is $\asymp_{n} k{3n(n+1)/4}$. Our method uses the Fourier expansion of the Bergman kernel, and has wide applicability. We illustrate this by a simple algorithm. We also include some of the applications of our method, including individual sup-norms of small weights and non-vanishing of Poincar\'e series.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com