Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Variable Muckenhoupt Weight Revisited (2406.18947v1)

Published 27 Jun 2024 in math.CA and math.FA

Abstract: Let $p(\cdot):\ \mathbb Rn\to(0,\infty)$ be a variable exponent function and $X$ a ball quasi-Banach function space. In this paper, we first study the relationship between two kinds of variable weights $\mathcal{W}{p(\cdot)}(\mathbb{R}n)$ and $A{p(\cdot)}(\mathbb{R}n)$. Then, by regarding the weighted variable Lebesgue space $L{p(\cdot)}_{\omega}(\mathbb{R}n)$ with $\omega\in\mathcal{W}{p(\cdot)}(\mathbb{R}n)$ as a special case of $X$ and applying known results of the Hardy-type space $H{X}(\mathbb{R}n)$ associated with $X$, we further obtain several equivalent characterizations of the weighted variable Hardy space $H{p(\cdot)}_{\omega}(\rn)$ and the boundedness of some sublinear operators on $H{p(\cdot)}_{\omega}(\rn)$. All of these results coincide with or improve existing ones, or are completely new.

Summary

We haven't generated a summary for this paper yet.