Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Credit Ratings: Heterogeneous Effect on Capital Structure (2406.18936v1)

Published 27 Jun 2024 in econ.GN, q-fin.EC, and stat.AP

Abstract: Why do companies choose particular capital structures? A compelling answer to this question remains elusive despite extensive research. In this article, we use double machine learning to examine the heterogeneous causal effect of credit ratings on leverage. Taking advantage of the flexibility of random forests within the double machine learning framework, we model the relationship between variables associated with leverage and credit ratings without imposing strong assumptions about their functional form. This approach also allows for data-driven variable selection from a large set of individual company characteristics, supporting valid causal inference. We report three findings: First, credit ratings causally affect the leverage ratio. Having a rating, as opposed to having none, increases leverage by approximately 7 to 9 percentage points, or 30\% to 40\% relative to the sample mean leverage. However, this result comes with an important caveat, captured in our second finding: the effect is highly heterogeneous and varies depending on the specific rating. For AAA and AA ratings, the effect is negative, reducing leverage by about 5 percentage points. For A and BBB ratings, the effect is approximately zero. From BB ratings onwards, the effect becomes positive, exceeding 10 percentage points. Third, contrary to what the second finding might imply at first glance, the change from no effect to a positive effect does not occur abruptly at the boundary between investment and speculative grade ratings. Rather, it is gradual, taking place across the granular rating notches ("+/-") within the BBB and BB categories.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com