Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer (2406.18625v1)

Published 26 Jun 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Automatic prediction of amyotrophic lateral sclerosis (ALS) disease progression provides a more efficient and objective alternative than manual approaches. We propose ALS longitudinal speech transformer (ALST), a neural network-based automatic predictor of ALS disease progression from longitudinal speech recordings of ALS patients. By taking advantage of high-quality pretrained speech features and longitudinal information in the recordings, our best model achieves 91.0\% AUC, improving upon the previous best model by 5.6\% relative on the ALS TDI dataset. Careful analysis reveals that ALST is capable of fine-grained and interpretable predictions of ALS progression, especially for distinguishing between rarer and more severe cases. Code is publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Liming Wang (41 papers)
  2. Yuan Gong (45 papers)
  3. Nauman Dawalatabad (10 papers)
  4. Marco Vilela (3 papers)
  5. Katerina Placek (2 papers)
  6. Brian Tracey (5 papers)
  7. Yishu Gong (6 papers)
  8. Alan Premasiri (1 paper)
  9. Fernando Vieira (2 papers)
  10. James Glass (173 papers)

Summary

We haven't generated a summary for this paper yet.