Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advancing Cell Detection in Anterior Segment Optical Coherence Tomography Images (2406.17577v1)

Published 25 Jun 2024 in eess.IV and cs.CV

Abstract: Anterior uveitis, a common form of eye inflammation, can lead to permanent vision loss if not promptly diagnosed. Monitoring this condition involves quantifying inflammatory cells in the anterior chamber (AC) of the eye, which can be captured using Anterior Segment Optical Coherence Tomography (AS-OCT). However, manually identifying cells in AS-OCT images is time-consuming and subjective. Moreover, existing automated approaches may have limitations in both the effectiveness of detecting cells and the reliability of their detection results. To address these challenges, we propose an automated framework to detect cells in the AS-OCT images. This framework consists of a zero-shot chamber segmentation module and a cell detection module. The first module segments the AC area in the image without requiring human-annotated training data. Subsequently, the second module identifies individual cells within the segmented AC region. Through experiments, our framework demonstrates superior performance compared to current state-of-the-art methods for both AC segmentation and cell detection tasks. Notably, we find that previous cell detection approaches could suffer from low recall, potentially overlooking a significant number of cells. In contrast, our framework offers an improved solution, which could benefit the diagnosis and study of anterior uveitis. Our code for cell detection is publicly available at: https://github.com/joeybyc/cell_detection.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com