Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo Labelling for Enhanced Masked Autoencoders (2406.17450v1)

Published 25 Jun 2024 in cs.CV and cs.AI

Abstract: Masked Image Modeling (MIM)-based models, such as SdAE, CAE, GreenMIM, and MixAE, have explored different strategies to enhance the performance of Masked Autoencoders (MAE) by modifying prediction, loss functions, or incorporating additional architectural components. In this paper, we propose an enhanced approach that boosts MAE performance by integrating pseudo labelling for both class and data tokens, alongside replacing the traditional pixel-level reconstruction with token-level reconstruction. This strategy uses cluster assignments as pseudo labels to promote instance-level discrimination within the network, while token reconstruction requires generation of discrete tokens encapturing local context. The targets for pseudo labelling and reconstruction needs to be generated by a teacher network. To disentangle the generation of target pseudo labels and the reconstruction of the token features, we decouple the teacher into two distinct models, where one serves as a labelling teacher and the other as a reconstruction teacher. This separation proves empirically superior to a single teacher, while having negligible impact on throughput and memory consumption. Incorporating pseudo-labelling as an auxiliary task has demonstrated notable improvements in ImageNet-1K and other downstream tasks, including classification, semantic segmentation, and detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Srinivasa Rao Nandam (2 papers)
  2. Sara Atito (24 papers)
  3. Zhenhua Feng (27 papers)
  4. Josef Kittler (102 papers)
  5. Muhammad Awais (59 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.