Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A review of unsupervised learning in astronomy (2406.17316v1)

Published 25 Jun 2024 in astro-ph.IM and cs.LG

Abstract: This review summarizes popular unsupervised learning methods, and gives an overview of their past, current, and future uses in astronomy. Unsupervised learning aims to organise the information content of a dataset, in such a way that knowledge can be extracted. Traditionally this has been achieved through dimensionality reduction techniques that aid the ranking of a dataset, for example through principal component analysis or by using auto-encoders, or simpler visualisation of a high dimensional space, for example through the use of a self organising map. Other desirable properties of unsupervised learning include the identification of clusters, i.e. groups of similar objects, which has traditionally been achieved by the k-means algorithm and more recently through density-based clustering such as HDBSCAN. More recently, complex frameworks have emerged, that chain together dimensionality reduction and clustering methods. However, no dataset is fully unknown. Thus, nowadays a lot of research has been directed towards self-supervised and semi-supervised methods that stand to gain from both supervised and unsupervised learning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com