Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Field-Dependent Metrics and Higher-Form Symmetries in Duality-Invariant Theories of Non-Linear Electrodynamics (2406.17194v3)

Published 25 Jun 2024 in hep-th, cond-mat.str-el, hep-ph, math-ph, and math.MP

Abstract: We prove that a $4d$ theory of non-linear electrodynamics has equations of motion which are equivalent to those of the Maxwell theory in curved spacetime, but with the usual metric $g_{\mu \nu}$ replaced by a unit-determinant metric $h_{\mu \nu} ( F )$ which is a function of the field strength $F_{\mu \nu}$, if and only if the theory enjoys electric-magnetic duality invariance. Among duality-invariant models, the Modified Maxwell (ModMax) theory is special because the associated metric $h_{\mu \nu} ( F )$ produces identical equations of motion when it is coupled to the Maxwell theory via two different prescriptions which we describe. We use the field-dependent metric perspective to analyze the electric and magnetic $1$-form global symmetries in models of self-dual electrodynamics. This analysis suggests that any duality-invariant theory possesses a set of conserved currents $j\mu$ which are in one-to-one correspondence with $2$-forms that are harmonic with respect to the field-dependent metric $h_{\mu \nu} ( F )$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.