Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 TPS
Gemini 2.5 Pro 55 TPS Pro
GPT-5 Medium 40 TPS
GPT-5 High 40 TPS Pro
GPT-4o 94 TPS
GPT OSS 120B 477 TPS Pro
Kimi K2 231 TPS Pro
2000 character limit reached

An information-geometric approach for network decomposition using the q-state Potts model (2406.17144v1)

Published 24 Jun 2024 in cs.IT, cs.SI, math-ph, math.IT, math.MP, nlin.AO, and stat.AP

Abstract: Complex networks are critical in many scientific, technological, and societal contexts due to their ability to represent and analyze intricate systems with interdependent components. Often, after labeling the nodes of a network with a community detection algorithm, its modular organization emerges, allowing a better understanding of the underlying structure by uncovering hidden relationships. In this paper, we introduce a novel information-geometric framework for the filtering and decomposition of networks whose nodes have been labeled. Our approach considers the labeled network as the outcome of a Markov random field modeled by a q-state Potts model. According to information geometry, the first and second order Fisher information matrices are related to the metric and curvature tensor of the parametric space of a statistical model. By computing an approximation to the local shape operator, the proposed methodology is able to identify low and high information nodes, allowing the decomposition of the labeled network in two complementary subgraphs. Hence, we call this method as the LO-HI decomposition. Experimental results with several kinds of networks show that the high information subgraph is often related to edges and boundaries, while the low information subgraph is a smoother version of the network, in the sense that the modular structure is improved.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.