Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Single-Loop Primal-Dual Algorithm for Non-Convex Functional Constrained Optimization (2406.17107v1)

Published 24 Jun 2024 in math.OC

Abstract: Non-convex functional constrained optimization problems have gained substantial attention in machine learning and signal processing. This paper develops a new primal-dual algorithm for solving this class of problems. The algorithm is based on a novel form of the Lagrangian function, termed {\em Proximal-Perturbed Augmented Lagrangian}, which enables us to develop an efficient and simple first-order algorithm that converges to a stationary solution under mild conditions. Our method has several key features of differentiation over existing augmented Lagrangian-based methods: (i) it is a single-loop algorithm that does not require the continuous adjustment of the penalty parameter to infinity; (ii) it can achieves an improved iteration complexity of $\widetilde{\mathcal{O}}(1/\epsilon2)$ or at least ${\mathcal{O}}(1/\epsilon{2/q})$ with $q \in (2/3,1)$ for computing an $\epsilon$-approximate stationary solution, compared to the best-known complexity of $\mathcal{O}(1/\epsilon3)$; and (iii) it effectively handles functional constraints for feasibility guarantees with fixed parameters, without imposing boundedness assumptions on the dual iterates and the penalty parameters. We validate the effectiveness of our method through numerical experiments on popular non-convex problems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com