Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Modal Vision Transformers for Crop Mapping from Satellite Image Time Series (2406.16513v1)

Published 24 Jun 2024 in cs.CV

Abstract: Using images acquired by different satellite sensors has shown to improve classification performance in the framework of crop mapping from satellite image time series (SITS). Existing state-of-the-art architectures use self-attention mechanisms to process the temporal dimension and convolutions for the spatial dimension of SITS. Motivated by the success of purely attention-based architectures in crop mapping from single-modal SITS, we introduce several multi-modal multi-temporal transformer-based architectures. Specifically, we investigate the effectiveness of Early Fusion, Cross Attention Fusion and Synchronized Class Token Fusion within the Temporo-Spatial Vision Transformer (TSViT). Experimental results demonstrate significant improvements over state-of-the-art architectures with both convolutional and self-attention components.

Citations (2)

Summary

We haven't generated a summary for this paper yet.