Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Comprehensive Preference Data Collection for Reward Modeling (2406.16486v1)

Published 24 Jun 2024 in cs.AI

Abstract: Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of LLMs with human preferences, thereby enhancing the quality of responses generated. A critical component of RLHF is the reward model, which is trained on preference data and outputs a scalar reward during the inference stage. However, the collection of preference data still lacks thorough investigation. Recent studies indicate that preference data is collected either by AI or humans, where chosen and rejected instances are identified among pairwise responses. We question whether this process effectively filters out noise and ensures sufficient diversity in collected data. To address these concerns, for the first time, we propose a comprehensive framework for preference data collection, decomposing the process into four incremental steps: Prompt Generation, Response Generation, Response Filtering, and Human Labeling. This structured approach ensures the collection of high-quality preferences while reducing reliance on human labor. We conducted comprehensive experiments based on the data collected at different stages, demonstrating the effectiveness of the proposed data collection method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Yulan Hu (13 papers)
  2. Qingyang Li (46 papers)
  3. Sheng Ouyang (13 papers)
  4. Ge Chen (64 papers)
  5. Kaihui Chen (2 papers)
  6. Lijun Mei (3 papers)
  7. Xucheng Ye (8 papers)
  8. Fuzheng Zhang (60 papers)
  9. Yong Liu (721 papers)
Citations (2)