Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thinking Inside The Box: Privacy Against Stronger Adversaries (2406.16313v1)

Published 24 Jun 2024 in cs.CR

Abstract: In this thesis, we study extensions of statistical cryptographic primitives. In particular we study leakage-resilient secret sharing, non-malleable extractors, and immunized ideal one-way functions. The thesis is divided into three main chapters. In the first chapter, we show that 2-out-of-2 leakage resilient (and also non-malleable) secret sharing requires randomness sources that are also extractable. This rules out the possibility of using min-entropic sources. In the second, we introduce collision-resistant seeded extractors and show that any seeded extractor can be made collision resistant at a small overhead in seed length. We then use it to give a two-source non-malleable extractor with entropy rate 0.81 in one source and polylogarithmic in the other. The non-malleable extractor lead to the first statistical privacy amplification protocol against memory tampering adversaries. In the final chapter, we study the hardness of the data structure variant of the 3SUM problem which is motivated by a recent construction to immunise random oracles against pre-processing adversaries. We give worst-case data structure hardness for the 3SUM problem matching known barriers in data structures for adaptive adversaries. We also give a slightly stronger lower bound in the case of non-adaptivity. Lastly, we give a novel result in the bit-probe setting.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com