Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energetic Spectral-Element Time Marching Methods for Phase-Field Nonlinear Gradient Systems (2406.16287v1)

Published 24 Jun 2024 in math.NA and cs.NA

Abstract: We propose two efficient energetic spectral-element methods in time for marching nonlinear gradient systems with the phase-field Allen--Cahn equation as an example: one fully implicit nonlinear method and one semi-implicit linear method. Different from other spectral methods in time using spectral Petrov-Galerkin or weighted Galerkin approximations, the presented implicit method employs an energetic variational Galerkin form that can maintain the mass conservation and energy dissipation property of the continuous dynamical system. Another advantage of this method is its superconvergence. A high-order extrapolation is adopted for the nonlinear term to get the semi-implicit method. The semi-implicit method does not have superconvergence, but can be improved by a few Picard-like iterations to recover the superconvergence of the implicit method. Numerical experiments verify that the method using Legendre elements of degree three outperforms the 4th-order implicit-explicit backward differentiation formula and the 4th-order exponential time difference Runge-Kutta method, which were known to have best performances in solving phase-field equations. In addition to the standard Allen--Cahn equation, we also apply the method to a conservative Allen--Cahn equation, in which the conservation of discrete total mass is verified. The applications of the proposed methods are not limited to phase-field Allen--Cahn equations. They are suitable for solving general, large-scale nonlinear dynamical systems.

Summary

We haven't generated a summary for this paper yet.