Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torsion-Free Lattices in Baumslag-Solitar Complexes (2406.16196v2)

Published 23 Jun 2024 in math.GT

Abstract: This paper classifies the pairs of nonzero integers $(m,n)$ for which the locally compact group of combinatorial automorphisms, Aut$(X_{m,n})$, contains incommensurable torsion-free lattices, where $X_{m,n}$ is the combinatorial model for Baumslag-Solitar group $BS(m,n)$. In particular, we show that Aut$(X_{m,n})$ contains abstractly incommensurable torsion-free lattices if and only if there exists a prime $p \leq \mathrm{gcd}(m,n)$ such that either $\frac{m}{\mathrm{gcd}(m,n)}$ or $\frac{n}{\mathrm{gcd}(m,n)}$ is divisible by $p$. In all these cases, we construct infinitely many commensurability classes. Additionally, we show that when Aut$(X_{m,n})$ does not contain incommensurable lattices, the cell complex $X_{m,n}$ satisfies Leighton's property.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com