Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More on yet another ideal version of the bounding number (2406.15949v3)

Published 22 Jun 2024 in math.LO

Abstract: This is a continuation of the paper [J. Symb. Log. 87 (2022), 1065--1092]. For an ideal $\mathcal{I}$ on $\omega$ we denote $\mathcal{D}{\mathcal{I}}={f\in\omega\omega: f{-1}[{n}]\in\mathcal{I} \text{ for every $n\in \omega$}}$ and write $f\leq{\mathcal{I}} g$ if ${n\in\omega:f(n)>g(n)}\in\mathcal{I}$, where $f,g\in\omega\omega$. We study the cardinal numbers $\mathfrak{b}(\geq_{\mathcal{I}}\cap (\mathcal{D}{\mathcal{I}} \times \mathcal{D}{\mathcal{I}}))$ describing the smallest sizes of subsets of $\mathcal{D}{\mathcal{I}}$ that are unbounded from below with respect to $\leq{\mathcal{I}}$. In particular, we examine the relationships of $\mathfrak{b}(\geq_{\mathcal{I}}\cap (\mathcal{D}{\mathcal{I}} \times \mathcal{D}{\mathcal{I}}))$ with the dominating number $\mathfrak{d}$. We show that, consistently, $\mathfrak{b}(\geq_{\mathcal{I}}\cap (\mathcal{D}{\mathcal{I}} \times \mathcal{D}{\mathcal{I}}))>\mathfrak{d}$ for some ideal $\mathcal{I}$, however $\mathfrak{b}(\geq_{\mathcal{I}}\cap (\mathcal{D}{\mathcal{I}} \times \mathcal{D}{\mathcal{I}}))\leq\mathfrak{d}$ for all analytic ideals $\mathcal{I}$. Moreover, we give example of a Borel ideal with $\mathfrak{b}(\geq_{\mathcal{I}}\cap (\mathcal{D}{\mathcal{I}} \times \mathcal{D}{\mathcal{I}}))=add(\mathcal{M})$.

Summary

We haven't generated a summary for this paper yet.