Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Split Federated Learning Empowered Vehicular Edge Intelligence: Adaptive Parellel Design and Future Directions (2406.15804v2)

Published 22 Jun 2024 in cs.DC

Abstract: To realize ubiquitous intelligence of future vehicular networks, AI is critical since it can mine knowledge from vehicular data to improve the quality of many AI driven vehicular services. By combining AI techniques with vehicular networks, Vehicular Edge Intelligence (VEI) can utilize the computing, storage, and communication resources of vehicles to train the AI models. Nevertheless, when executing the model training, the traditional centralized learning paradigm requires vehicles to upload their raw data to a central server, which results in significant communication overheads and the risk of privacy leakage. In this article, we first overview the system architectures, performance metrics and challenges ahead of VEI design. Then we propose to utilize distribute machine learning scheme, namely split federated learning (SFL), to boost the development of VEI. We present a novel adaptive and parellel SFL scheme and conduct corresponding analysis on its performance. Future research directions are highlighted to shed light on the efficient design of SFL.

Summary

We haven't generated a summary for this paper yet.