Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Issues in Industrial AI System: A Meta-Review and Research Strategy (2406.15784v1)

Published 22 Jun 2024 in cs.AI

Abstract: In the era of Industry 4.0, AI is assuming an increasingly pivotal role within industrial systems. Despite the recent trend within various industries to adopt AI, the actual adoption of AI is not as developed as perceived. A significant factor contributing to this lag is the data issues in AI implementation. How to address these data issues stands as a significant concern confronting both industry and academia. To address data issues, the first step involves mapping out these issues. Therefore, this study conducts a meta-review to explore data issues and methods within the implementation of industrial AI. Seventy-two data issues are identified and categorized into various stages of the data lifecycle, including data source and collection, data access and storage, data integration and interoperation, data pre-processing, data processing, data security and privacy, and AI technology adoption. Subsequently, the study analyzes the data requirements of various AI algorithms. Building on the aforementioned analyses, it proposes a data management framework, addressing how data issues can be systematically resolved at every stage of the data lifecycle. Finally, the study highlights future research directions. In doing so, this study enriches the existing body of knowledge and provides guidelines for professionals navigating the complex landscape of achieving data usability and usefulness in industrial AI.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com