Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Humas: A Heterogeneity- and Upgrade-aware Microservice Auto-scaling Framework in Large-scale Data Centers (2406.15769v1)

Published 22 Jun 2024 in cs.DC

Abstract: An effective auto-scaling framework is essential for microservices to ensure performance stability and resource efficiency under dynamic workloads. As revealed by many prior studies, the key to efficient auto-scaling lies in accurately learning performance patterns, i.e., the relationship between performance metrics and workloads in data-driven schemes. However, we notice that there are two significant challenges in characterizing performance patterns for large-scale microservices. Firstly, diverse microservices demonstrate varying sensitivities to heterogeneous machines, causing difficulty in quantifying the performance difference in a fixed manner. Secondly, frequent version upgrades of microservices result in uncertain changes in performance patterns, known as pattern drifts, leading to imprecise resource capacity estimation issues. To address these challenges, we propose Humas, a heterogeneity- and upgrade-aware auto-scaling framework for large-scale microservices. Firstly, Humas quantifies the difference in resource efficiency among heterogeneous machines for various microservices online and normalizes their resources in standard units. Additionally, Humas develops a least squares density-difference (LSDD) based algorithm to identify pattern drifts caused by upgrades. Lastly, Humas generates capacity adjustment plans for microservices based on the latest performance patterns and predicted workloads. The experiment results conducted on 50 real microservices with over 11,000 containers demonstrate that Humas improves resource efficiency and performance stability by approximately 30.4% and 48.0%, respectively, compared to state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.