Synthetic Lyrics Detection Across Languages and Genres (2406.15231v2)
Abstract: In recent years, the use of LLMs to generate music content, particularly lyrics, has gained in popularity. These advances provide valuable tools for artists and enhance their creative processes, but they also raise concerns about copyright violations, consumer satisfaction, and content spamming. Previous research has explored content detection in various domains. However, no work has focused on the modality of lyrics in music. To address this gap, we curated a diverse dataset of real and synthetic lyrics from multiple languages, music genres, and artists. The generation pipeline was validated using both humans and automated methods. We conducted a comprehensive evaluation of existing synthetic text detection features on this novel data type. Additionally, we explored strategies to adjust the best feature for lyrics using unsupervised adaptation. Adhering to constraints of our application domain, we investigated cross-lingual generalization, data scalability, robustness to language combinations, and the impact of genre novelty in a few-shot detection scenario. Our findings show promising results within language families and similar genres, yet challenges persist with lyrics in languages that exhibit distinct semantic structures.