Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors (2406.15104v4)

Published 21 Jun 2024 in cs.CR and cs.CV

Abstract: Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep learning models in real-world scenarios. In recent years, many OOD detectors have been developed, and even the benchmarking has been standardized, i.e. OpenOOD. The number of post-hoc detectors is growing fast. They are showing an option to protect a pre-trained classifier against natural distribution shifts and claim to be ready for real-world scenarios. However, its effectiveness in dealing with adversarial examples (AdEx) has been neglected in most studies. In cases where an OOD detector includes AdEx in its experiments, the lack of uniform parameters for AdEx makes it difficult to accurately evaluate the performance of the OOD detector. This paper investigates the adversarial robustness of 16 post-hoc detectors against various evasion attacks. It also discusses a roadmap for adversarial defense in OOD detectors that would help adversarial robustness. We believe that level 1 (AdEx on a unified dataset) should be added to any OOD detector to see the limitations. The last level in the roadmap (defense against adaptive attacks) we added for integrity from an adversarial machine learning (AML) point of view, which we do not believe is the ultimate goal for OOD detectors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Peter Lorenz (10 papers)
  2. Mario Fernandez (2 papers)
  3. Jens Müller (37 papers)
  4. Ullrich Köthe (52 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com