Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Human-AI collectives produce the most accurate differential diagnoses (2406.14981v1)

Published 21 Jun 2024 in cs.AI and cs.HC

Abstract: Artificial intelligence systems, particularly LLMs, are increasingly being employed in high-stakes decisions that impact both individuals and society at large, often without adequate safeguards to ensure safety, quality, and equity. Yet LLMs hallucinate, lack common sense, and are biased - shortcomings that may reflect LLMs' inherent limitations and thus may not be remedied by more sophisticated architectures, more data, or more human feedback. Relying solely on LLMs for complex, high-stakes decisions is therefore problematic. Here we present a hybrid collective intelligence system that mitigates these risks by leveraging the complementary strengths of human experience and the vast information processed by LLMs. We apply our method to open-ended medical diagnostics, combining 40,762 differential diagnoses made by physicians with the diagnoses of five state-of-the art LLMs across 2,133 medical cases. We show that hybrid collectives of physicians and LLMs outperform both single physicians and physician collectives, as well as single LLMs and LLM ensembles. This result holds across a range of medical specialties and professional experience, and can be attributed to humans' and LLMs' complementary contributions that lead to different kinds of errors. Our approach highlights the potential for collective human and machine intelligence to improve accuracy in complex, open-ended domains like medical diagnostics.

Summary

We haven't generated a summary for this paper yet.