Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online t-SNE for single-cell RNA-seq (2406.14842v1)

Published 21 Jun 2024 in q-bio.GN and cs.HC

Abstract: Due to the sequential sample arrival, changing experiment conditions, and evolution of knowledge, the demand to continually visualize evolving structures of sequential and diverse single-cell RNA-sequencing (scRNA-seq) data becomes indispensable. However, as one of the state-of-the-art visualization and analysis methods for scRNA-seq, t-distributed stochastic neighbor embedding (t-SNE) merely visualizes static scRNA-seq data offline and fails to meet the demand well. To address these challenges, we introduce online t-SNE to seamlessly integrate sequential scRNA-seq data. Online t-SNE achieves this by leveraging the embedding space of old samples, exploring the embedding space of new samples, and aligning the two embedding spaces on the fly. Consequently, online t-SNE dramatically enables the continual discovery of new structures and high-quality visualization of new scRNA-seq data without retraining from scratch. We showcase the formidable visualization capabilities of online t-SNE across diverse sequential scRNA-seq datasets.

Summary

We haven't generated a summary for this paper yet.