Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Behavior-Inspired Neural Networks for Relational Inference (2406.14746v2)

Published 20 Jun 2024 in cs.LG and cs.RO

Abstract: From pedestrians to Kuramoto oscillators, interactions between agents govern how a multitude of dynamical systems evolve in space and time. Discovering how these agents relate to each other can improve our understanding of the often complex dynamics that underlie these systems. Recent works learn to categorize relationships between agents based on observations of their physical behavior. These approaches are limited in that the relationship categories are modelled as outcomes of categorical distribution, when in real world systems categories often intermingle and interact. In this work, we introduce a level of abstraction between the observable behavior of agents and the latent categories that determine their behavior. To do this, we learn a mapping from agent behavior to agent preferences for each latent category in a graph neural network. We integrate the physical proximity of agents and their preferences in a nonlinear opinion dynamics model which provides a mechanism to identify mutually exclusive latent categories, predict an agent's evolution in time, and control an agent's physical behavior. We demonstrate the utility of our model for learning interpretable categories, and its efficacy on long-horizon prediction across several benchmarks where we outperform existing methods.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com