Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

xCOMET-lite: Bridging the Gap Between Efficiency and Quality in Learned MT Evaluation Metrics (2406.14553v2)

Published 20 Jun 2024 in cs.CL

Abstract: State-of-the-art trainable machine translation evaluation metrics like xCOMET achieve high correlation with human judgment but rely on large encoders (up to 10.7B parameters), making them computationally expensive and inaccessible to researchers with limited resources. To address this issue, we investigate whether the knowledge stored in these large encoders can be compressed while maintaining quality. We employ distillation, quantization, and pruning techniques to create efficient xCOMET alternatives and introduce a novel data collection pipeline for efficient black-box distillation. Our experiments show that, using quantization, xCOMET can be compressed up to three times with no quality degradation. Additionally, through distillation, we create an 278M-sized xCOMET-lite metric, which has only 2.6% of xCOMET-XXL parameters, but retains 92.1% of its quality. Besides, it surpasses strong small-scale metrics like COMET-22 and BLEURT-20 on the WMT22 metrics challenge dataset by 6.4%, despite using 50% fewer parameters. All code, dataset, and models are available online at https://github.com/NL2G/xCOMET-lite.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Daniil Larionov (12 papers)
  2. Mikhail Seleznyov (3 papers)
  3. Vasiliy Viskov (1 paper)
  4. Alexander Panchenko (92 papers)
  5. Steffen Eger (90 papers)

Summary

We haven't generated a summary for this paper yet.