Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Countering adversarial perturbations in graphs using error correcting codes (2406.14245v2)

Published 20 Jun 2024 in cs.CR and physics.data-an

Abstract: We consider the problem of a graph subjected to adversarial perturbations, such as those arising from cyber-attacks, where edges are covertly added or removed. The adversarial perturbations occur during the transmission of the graph between a sender and a receiver. To counteract potential perturbations, this study explores a repetition coding scheme with sender-assigned noise and majority voting on the receiver's end to rectify the graph's structure. The approach operates without prior knowledge of the attack's characteristics. We analytically derive a bound on the number of repetitions needed to satisfy probabilistic constraints on the quality of the reconstructed graph. The method can accurately and effectively decode Erd\H{o}s-R\'{e}nyi graphs that were subjected to non-random edge removal, namely, those connected to vertices with the highest eigenvector centrality, in addition to random addition and removal of edges by the attacker. The method is also effective against attacks on large scale-free graphs generated using the Barab\'{a}si-Albert model but require a larger number of repetitions than needed to correct Erd\H{o}s-R\'{e}nyi graphs.

Summary

We haven't generated a summary for this paper yet.