Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Averaging polyhazard models using Piecewise deterministic Monte Carlo with applications to data with long-term survivors (2406.14182v1)

Published 20 Jun 2024 in stat.ME and stat.AP

Abstract: Polyhazard models are a class of flexible parametric models for modelling survival over extended time horizons. Their additive hazard structure allows for flexible, non-proportional hazards whose characteristics can change over time while retaining a parametric form, which allows for survival to be extrapolated beyond the observation period of a study. Significant user input is required, however, in selecting the number of latent hazards to model, their distributions and the choice of which variables to associate with each hazard. The resulting set of models is too large to explore manually, limiting their practical usefulness. Motivated by applications to stroke survivor and kidney transplant patient survival times we extend the standard polyhazard model through a prior structure allowing for joint inference of parameters and structural quantities, and develop a sampling scheme that utilises state-of-the-art Piecewise Deterministic Markov Processes to sample from the resulting transdimensional posterior with minimal user tuning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com