Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification (2406.12507v2)

Published 18 Jun 2024 in cs.LG

Abstract: Explanation for Multivariate Time Series Classification (MTSC) is an important topic that is under explored. There are very few quantitative evaluation methodologies and even fewer examples of actionable explanation, where the explanation methods are shown to objectively improve specific computational tasks on time series data. In this paper we focus on analyzing InterpretTime, a recent evaluation methodology for attribution methods applied to MTSC. We showcase some significant weaknesses of the original methodology and propose ideas to improve both its accuracy and efficiency. Unlike related work, we go beyond evaluation and also showcase the actionability of the produced explainer ranking, by using the best attribution methods for the task of channel selection in MTSC. We find that perturbation-based methods such as SHAP and Feature Ablation work well across a set of datasets, classifiers and tasks and outperform gradient-based methods. We apply the best ranked explainers to channel selection for MTSC and show significant data size reduction and improved classifier accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets