Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BadSampler: Harnessing the Power of Catastrophic Forgetting to Poison Byzantine-robust Federated Learning (2406.12222v1)

Published 18 Jun 2024 in cs.CR, cs.AI, and cs.LG

Abstract: Federated Learning (FL) is susceptible to poisoning attacks, wherein compromised clients manipulate the global model by modifying local datasets or sending manipulated model updates. Experienced defenders can readily detect and mitigate the poisoning effects of malicious behaviors using Byzantine-robust aggregation rules. However, the exploration of poisoning attacks in scenarios where such behaviors are absent remains largely unexplored for Byzantine-robust FL. This paper addresses the challenging problem of poisoning Byzantine-robust FL by introducing catastrophic forgetting. To fill this gap, we first formally define generalization error and establish its connection to catastrophic forgetting, paving the way for the development of a clean-label data poisoning attack named BadSampler. This attack leverages only clean-label data (i.e., without poisoned data) to poison Byzantine-robust FL and requires the adversary to selectively sample training data with high loss to feed model training and maximize the model's generalization error. We formulate the attack as an optimization problem and present two elegant adversarial sampling strategies, Top-$\kappa$ sampling, and meta-sampling, to approximately solve it. Additionally, our formal error upper bound and time complexity analysis demonstrate that our design can preserve attack utility with high efficiency. Extensive evaluations on two real-world datasets illustrate the effectiveness and performance of our proposed attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi Liu (543 papers)
  2. Cong Wang (310 papers)
  3. Xingliang Yuan (40 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.