Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Mel Spectrogram Enhancement Paradigm Based on CWT in Speech Synthesis (2406.12164v2)

Published 18 Jun 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Acoustic features play an important role in improving the quality of the synthesised speech. Currently, the Mel spectrogram is a widely employed acoustic feature in most acoustic models. However, due to the fine-grained loss caused by its Fourier transform process, the clarity of speech synthesised by Mel spectrogram is compromised in mutant signals. In order to obtain a more detailed Mel spectrogram, we propose a Mel spectrogram enhancement paradigm based on the continuous wavelet transform (CWT). This paradigm introduces an additional task: a more detailed wavelet spectrogram, which like the post-processing network takes as input the Mel spectrogram output by the decoder. We choose Tacotron2 and Fastspeech2 for experimental validation in order to test autoregressive (AR) and non-autoregressive (NAR) speech systems, respectively. The experimental results demonstrate that the speech synthesised using the model with the Mel spectrogram enhancement paradigm exhibits higher MOS, with an improvement of 0.14 and 0.09 compared to the baseline model, respectively. These findings provide some validation for the universality of the enhancement paradigm, as they demonstrate the success of the paradigm in different architectures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Guoqiang Hu (47 papers)
  2. Huaning Tan (1 paper)
  3. Ruilai Li (1 paper)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com