Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis on Quantizing Diffusion Transformers (2406.11100v1)

Published 16 Jun 2024 in cs.CV

Abstract: Diffusion Models (DMs) utilize an iterative denoising process to transform random noise into synthetic data. Initally proposed with a UNet structure, DMs excel at producing images that are virtually indistinguishable with or without conditioned text prompts. Later transformer-only structure is composed with DMs to achieve better performance. Though Latent Diffusion Models (LDMs) reduce the computational requirement by denoising in a latent space, it is extremely expensive to inference images for any operating devices due to the shear volume of parameters and feature sizes. Post Training Quantization (PTQ) offers an immediate remedy for a smaller storage size and more memory-efficient computation during inferencing. Prior works address PTQ of DMs on UNet structures have addressed the challenges in calibrating parameters for both activations and weights via moderate optimization. In this work, we pioneer an efficient PTQ on transformer-only structure without any optimization. By analysing challenges in quantizing activations and weights for diffusion transformers, we propose a single-step sampling calibration on activations and adapt group-wise quantization on weights for low-bit quantization. We demonstrate the efficiency and effectiveness of proposed methods with preliminary experiments on conditional image generation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuewei Yang (7 papers)
  2. Jialiang Wang (36 papers)
  3. Xiaoliang Dai (44 papers)
  4. Peizhao Zhang (40 papers)
  5. Hongbo Zhang (54 papers)

Summary

We haven't generated a summary for this paper yet.