Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

From Data Quality for AI to AI for Data Quality: A Systematic Review of Tools for AI-Augmented Data Quality Management in Data Warehouses (2406.10940v3)

Published 16 Jun 2024 in cs.DB, cs.AI, cs.CE, and cs.ET

Abstract: While high data quality (DQ) is critical for analytics, compliance, and AI performance, data quality management (DQM) remains a complex, resource-intensive, and often manual process. This study investigates the extent to which existing tools support AI-augmented data quality management (DQM) in data warehouse environments. To this end, we conduct a systematic review of 151 DQ tools to evaluate their automation capabilities, particularly in detecting and recommending DQ rules in data warehouses -- a key component of modern data ecosystems. Using a multi-phase screening process based on functionality, trialability, regulatory compliance (e.g., GDPR), and architectural compatibility with data warehouses, only 10 tools met the criteria for AI-augmented DQM. The analysis reveals that most tools emphasize data cleansing and preparation for AI, rather than leveraging AI to improve DQ itself. Although metadata- and ML-based rule detection techniques are present, features such as SQL-based rule specification, reconciliation logic, and explainability of AI-driven recommendations remain scarce. This study offers practical guidance for tool selection and outlines critical design requirements for next-generation AI-driven DQ solutions -- advocating a paradigm shift from data quality for AI'' toAI for data quality management''.

Summary

We haven't generated a summary for this paper yet.