Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First-Order Manifold Data Augmentation for Regression Learning (2406.10914v1)

Published 16 Jun 2024 in cs.LG

Abstract: Data augmentation (DA) methods tailored to specific domains generate synthetic samples by applying transformations that are appropriate for the characteristics of the underlying data domain, such as rotations on images and time warping on time series data. In contrast, domain-independent approaches, e.g. mixup, are applicable to various data modalities, and as such they are general and versatile. While regularizing classification tasks via DA is a well-explored research topic, the effect of DA on regression problems received less attention. To bridge this gap, we study the problem of domain-independent augmentation for regression, and we introduce FOMA: a new data-driven domain-independent data augmentation method. Essentially, our approach samples new examples from the tangent planes of the train distribution. Augmenting data in this way aligns with the network tendency towards capturing the dominant features of its input signals. We evaluate FOMA on in-distribution generalization and out-of-distribution robustness benchmarks, and we show that it improves the generalization of several neural architectures. We also find that strong baselines based on mixup are less effective in comparison to our approach. Our code is publicly available athttps://github.com/azencot-group/FOMA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ilya Kaufman (3 papers)
  2. Omri Azencot (25 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.