Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demonstration Notebook: Finding the Most Suited In-Context Learning Example from Interactions (2406.10878v1)

Published 16 Jun 2024 in cs.AI and cs.CL

Abstract: LLMs benefit greatly from prompt engineering, with in-context learning standing as a pivital technique. While former approaches have provided various ways to construct the demonstrations used for in-context learning, they often ignore the inherent heterogeneity within datasets, applying the same demonstrations to all reasoning questions. We observed that the effectiveness of demonstrations varies depending on the specific question. This motivates our exploration of using prompt engineering to select appropriate demonstrations. To address the challenge of automatically creating and choosing demonstrations tailored to each question, we propose a novel prompt engineering workflow built around a novel object called the "demonstration notebook." This notebook helps identify the most suitable in-context learning example for a question by gathering and reusing information from the LLM's past interactions. Our experiments show that this approach outperforms all existing methods for automatic demonstration construction and selection (as far as we know), achieving state-of-the-art results on serveral reasoning benchmarks. The method's versatility is further demonstrated by its success in text summarization and prompt compression tasks. Additionally, we contribute a rigorous analysis method to reveal the "demonstrative regime" of a demonstration, providing valuable insights into how demonstrations relate to different question types within a dataset.

Summary

We haven't generated a summary for this paper yet.