Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language (2406.10806v2)

Published 16 Jun 2024 in cs.CL, cs.AI, and cs.IR

Abstract: Despite advancements in NLP and the growing availability of pretrained models, the English language remains the primary focus of model development. Continued pretraining on language-specific corpora provides a practical solution for adapting models to other languages. However, the impact of different pretraining settings on downstream tasks remains underexplored. This work introduces $\texttt{ptt5-v2}$, investigating the continued pretraining of T5 models for Portuguese. We first develop a baseline set of settings and pretrain models with sizes up to 3B parameters. Finetuning on three Portuguese downstream tasks (assin2 STS, assin2 RTE, and TweetSentBR) yields SOTA results on the latter two. We then explore the effects of different pretraining configurations, including pretraining data quality, optimization strategies, and multi-epoch pretraining. Perhaps surprisingly, their impact remains subtle compared to our baseline. We release $\texttt{ptt5-v2}$ pretrained checkpoints and their MonoT5-based finetuned $\texttt{MonoPTT5}$ rerankers on HuggingFace in their respective collections at \url{https://huggingface.co/unicamp-dl}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marcos Piau (4 papers)
  2. Roberto Lotufo (41 papers)
  3. Rodrigo Nogueira (70 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.