Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions (2406.10573v1)

Published 15 Jun 2024 in cs.LG, cs.AI, and cs.CR

Abstract: Graph Neural Networks (GNNs) have significantly advanced various downstream graph-relevant tasks, encompassing recommender systems, molecular structure prediction, social media analysis, etc. Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks, wherein adversaries employ triggers to poison input samples, inducing GNN to adversary-premeditated malicious outputs. This is typically due to the controlled training process, or the deployment of untrusted models, such as delegating model training to third-party service, leveraging external training sets, and employing pre-trained models from online sources. Although there's an ongoing increase in research on GNN backdoors, comprehensive investigation into this field is lacking. To bridge this gap, we propose the first survey dedicated to GNN backdoors. We begin by outlining the fundamental definition of GNN, followed by the detailed summarization and categorization of current GNN backdoor attacks and defenses based on their technical characteristics and application scenarios. Subsequently, the analysis of the applicability and use cases of GNN backdoors is undertaken. Finally, the exploration of potential research directions of GNN backdoors is presented. This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.

Summary

We haven't generated a summary for this paper yet.