Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Lightweight Framework for Adaptive Retrieval In Code Completion With Critique Model

Published 11 Jun 2024 in cs.SE | (2406.10263v1)

Abstract: Recent advancements in Retrieval-Augmented Generation have significantly enhanced code completion at the repository level. Various RAG-based code completion systems are proposed based on different design choices. For instance, gaining more effectiveness at the cost of repeating the retrieval-generation process multiple times. However, the indiscriminate use of retrieval in current methods reveals issues in both efficiency and effectiveness, as a considerable portion of retrievals are unnecessary and may introduce unhelpful or even harmful suggestions to code LLMs. To address these challenges, we introduce CARD, a lightweight critique method designed to provide insights into the necessity of retrievals and select the optimal answer from multiple predictions. CARD can seamlessly integrate into any RAG-based code completion system. Our evaluation shows that CARD saves 21% to 46% times of retrieval for Line completion, 14% to 40% times of retrieval for API completion, and 6% to 46.5% times of retrieval for function completion respectively, while improving the accuracy. CARD reduces latency ranging from 16% to 83%. CARD is generalizable to different LMs, retrievers, and programming languages. It is lightweight with training in few seconds and inference in few milliseconds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.