Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the one dimensional polynomial, regular and regulous images of closed balls and spheres (2406.09943v1)

Published 14 Jun 2024 in math.AG

Abstract: We present a full geometric characterization of the $1$-dimensional (semi-algebraic) images $S$ of either $n$-dimensional closed balls $\overline{\mathcal B}_n\subset{\mathbb R}n$ (of center the origin and radius $1$) or $n$-dimensional spheres ${\mathbb S}n\subset{\mathbb R}{n+1}$ (of center the origin and radius $1$) under polynomial, regular and regulous maps for some $n\geq1$. In all the previous cases one can find an alternative polynomial, regular or regulous map on either $\overline{\mathcal B}_1:=[-1,1]$ or ${\mathbb S}1$ such that $S$ is the image under such map of either $\overline{\mathcal B}_1:=[-1,1]$ or ${\mathbb S}1$. As a byproduct, we provide a full characterization of the images of ${\mathbb S}1\subset{\mathbb C}\equiv{\mathbb R}2$ under Laurent polynomials $f\in{\mathbb C}[{\tt z},{\tt z}{-1}]$, taking advantage of some previous works of Kobalev-Yang and Wilmshurst.

Citations (1)

Summary

We haven't generated a summary for this paper yet.