Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Speech Enhancement Without a Separate Speaker Embedding Model (2406.09928v1)

Published 14 Jun 2024 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: Personalized speech enhancement (PSE) models can improve the audio quality of teleconferencing systems by adapting to the characteristics of a speaker's voice. However, most existing methods require a separate speaker embedding model to extract a vector representation of the speaker from enroLLMent audio, which adds complexity to the training and deployment process. We propose to use the internal representation of the PSE model itself as the speaker embedding, thereby avoiding the need for a separate model. We show that our approach performs equally well or better than the standard method of using a pre-trained speaker embedding model on noise suppression and echo cancellation tasks. Moreover, our approach surpasses the ICASSP 2023 Deep Noise Suppression Challenge winner by 0.15 in Mean Opinion Score.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com