Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Tensors and Subdivision Methods for Finding the Zero Set of Polynomial Equations (2406.09857v1)

Published 14 Jun 2024 in cs.CG, cs.NA, cs.SC, and math.NA

Abstract: Finding the solutions to a system of multivariate polynomial equations is a fundamental problem in mathematics and computer science. It involves evaluating the polynomials at many points, often chosen from a grid. In most current methods, such as subdivision, homotopy continuation, or marching cube algorithms, polynomial evaluation is treated as a black box, repeating the process for each point. We propose a new approach that partially evaluates the polynomials, allowing us to efficiently reuse computations across multiple points in a grid. Our method leverages the Compressed Sparse Fiber data structure to efficiently store and process subsets of grid points. We integrated our amortized evaluation scheme into a subdivision algorithm. Experimental results show that our approach is efficient in practice. Notably, our software \texttt{voxelize} can successfully enclose curves defined by two trivariate polynomial equations of degree $100$, a problem that was previously intractable.

Summary

We haven't generated a summary for this paper yet.