Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Layer-Fused Scheduling of Transformer Networks on Multi-accelerator Platforms (2406.09804v1)

Published 14 Jun 2024 in cs.AR

Abstract: The impact of transformer networks is booming, yet, they come with significant computational complexity. It is therefore essential to understand how to optimally map and execute these networks on modern neural processor hardware. So far, literature on transformer scheduling optimization has been focusing on deployment on GPU and specific ASICs. This work enables extensive hardware/mapping exploration by extending the DSE framework Stream towards support for transformers across a wide variety of hardware architectures and different execution schedules. After validation, we explore the optimal schedule for transformer layers/attention heads and investigate whether layer fusion is beneficial to improve latency, energy or memory requirements. Our study shows that the memory requirements for active feature data can be drastically reduced, by adapting the execution schedule based on the size of the input of the attention head.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com